Technology II

Manufacturing methods
Gears Machining

GEAR TYPES

• Cylindrical gears:
 - spur
 - helical

• Bevel gears:
 - straight
 - curved (spiral)

• Worm wheels and worms
Spur and helical gears cutting

METHODS:

- **form milling** – using a **cutter** (with the same **edge profile** as the shape of the tooth space) and a **dividing device**
- **hobbing** – using a **hob** and a **generating process** for creating a tooth profile
- **shaping** – using a **shaper cutter** and a **generating process** for creating a tooth profile
- **broaching**
Gear machining – form milling (single gear tooth cutter)

Fig. 10.1. Basic method of machining gears by form milling.
Gear machining – form milling
Gear milling – tolerances and surface finish

<table>
<thead>
<tr>
<th>Type of cut</th>
<th>IT</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form milling – shape mill</td>
<td>9–11</td>
<td>3,2 - 6,3</td>
</tr>
<tr>
<td>End milling</td>
<td>8–9</td>
<td>3,2 - 6,3</td>
</tr>
</tbody>
</table>
Gear machining - hobbing

- **Hob** – a tool designed as a *worm shaped cutter*, which acts by the cutting *as a worm cooperating with the machined gear wheel*.

![Diagram of a hob and a machined gear wheel.]
Hobbing cutter
Gear hobbing
Gear hobbing

Fig. 10.3. The set of the axis of the hob to the axis of the gear blank in hobbing:
(a) spur, and (b) helical gears.

Fig. 10.4. Generating action of a tooth in hobbing.
Gear hobbing machine tool

Fig. 10.5. Hobbing machine.
Gear hobbing machine tool
Gear hobbing – kinematic schema
Gear machining - shaping

• circular shaper cutter

• rack shaper cutter

Fig. 10.7. Rack shaper cutter.
Gear shaping – a circular cutter
Gear shaping – a circular cutter
Gear shaping – the principle

Spur gears
- Cutter
- Shaper
- Workpiece
- Approach
- Return stroke
- Cutting
- Back-off

Helical gears
- Cutting motion
- Feed
- Generating
Gear shaping – a circular cutter
Gear shaping – a rack cutter
Gear shaper with the rack cutter
Tolerances and surface finish

<table>
<thead>
<tr>
<th>Type of cut</th>
<th>IT</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hobbing</td>
<td>5 - 7</td>
<td>0,8 – 3,2</td>
</tr>
<tr>
<td>Shaping – circular cutter</td>
<td>5 – 6</td>
<td>0,8 – 1,6</td>
</tr>
<tr>
<td>Shaping – rack cutter</td>
<td>4 - 5</td>
<td>0,8 – 1,6</td>
</tr>
</tbody>
</table>
Broaching

• Very productive method
• Broach has the shape of gear
• Ideal for internal gears
 – Tooth gaps one after another
 – All gaps simultaneously

Desc.:
1 – elongated body, 2 – teeth, 3 – gullets, 4 – teeth gaps, 5 – axis, 6 – follower end, 7 – pull end, 10 – outside shape of broach
Broaching

• From a premachined hole a final gear is made
Broaching

<table>
<thead>
<tr>
<th>Type of cut</th>
<th>IT</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughing</td>
<td>5 – 6</td>
<td>0,8 – 1,6</td>
</tr>
<tr>
<td>Finishing</td>
<td>4 – 5</td>
<td>0,8 – 1,6</td>
</tr>
</tbody>
</table>
Spur and helical gears finishing

METHODS:

• **shaving** – for gears **without** heat treatment
• **grinding** – mostly for gears **after** heat treatment
 - form grinding
 - involute - generating grinding
• **lapping**
• **teeth rounding** – creating a shape of tooth (in the direction parallel to the axis of rotation) to make changing gears easier
A gear wheel being shaved is run in contact with a shaving cutter

Shaving cutter – HSS tool; teeth with **serrations**, which are acting in the shaving

Fig. 10.12 Shaving cutter.

Fig. 10.13 Tooth of the shaving cutter.
GEAR WHEELS SHAVING

The gear and the cutter are run in mesh with their axes crossed at a small angle. During the rotation the gear is reciprocated longitudinally across the cutter. This "shaving" process causes very fine chips are cut from the tooth surface (process requires less than 1 minute).
Form gear grinding

Fig. 10.15. Form gear grinding.
Form splining grinding
Involute-generating grinding

Fig. 10.16. Straight-sided grinding wheels with a dresser.

Fig. 10.17. Straight-sided grinding wheel and involute-generation.
Involute-generating grinder

Fig. 10.19. Involute-generating grinding with a worm grinding wheel.
Involute-generating grinder
Gear finishing – tolerances and surface finish

<table>
<thead>
<tr>
<th>Type of cut</th>
<th>IT</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaving</td>
<td>5 - 6</td>
<td>0.4 – 0.8</td>
</tr>
<tr>
<td>Form grinding</td>
<td>5 – 7</td>
<td>0.2 – 1.6</td>
</tr>
<tr>
<td>Involute-generating grinding with straight-sided</td>
<td>2 - 4</td>
<td>0.2 – 0.4</td>
</tr>
<tr>
<td>grinding wheels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Involute-generating grinding with a worm grinding</td>
<td>3 - 5</td>
<td>0.2 – 0.8</td>
</tr>
<tr>
<td>wheels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gear lapping

- On finished, shaved and hardened gears.
- The gear runs in contact with one or more cast iron lapping gears.
- Flow of oil with abrasive is used.
- Improves surface quality at low costs then grinding.
- $Ra = 0.1 - 0.2$
Teeth rounding

Fig. 10.21. Teeth rounding by milling cutter.
Teeth rounding

Abdachen Außenverzahnung

Abdachen Innenverzahnung

Einseitig Anfasen/Entgraten Stirnräder
Anfasen/Entgraten Kegelräder
Kurzverzahnungen Wälzabdachen
Kurzverzahnungen Wälzabdachen
Straight bevel gears cutting

METHODS:

• **form milling** – using a **cutter** (with the same form as the tooth face) and creating first one, than the opposite **face flank of the tooth**

• **involute-generating milling** – using two **cutters** representing one tooth of a rack and a **generating process** for creating a tooth profile

• **shaping** – using a **shaping rack tool** and a **generating process** for creating a tooth profile

• **broaching** – using **rotational broach**
Straight bevel gears

involute-generating milling

Fig. 10.23. Involute-generating milling.
Straight bevel gears - shaping

Fig. 10.25. The basic kinematics of straight bevel gear shaving.
Straight bevel gears - broaching

Fig. 10.28. Strait bevel gears broaching (Revacycle method).
Straight bevel gears - broaching
Curved bevel gears cutting

METHODS:

• **Gleason** – teeth curved in the form of circle
• **Oerlikon** – teeth curved in the form of epicycloid
• **Klingelnberg** – teeth curved in the form of involute
Gleason method

Tool is a composition of a round body and cutting tools. The can be adjusted separately.
Curved bevel gears - Oerlikon

Fig. 10.31. Continuous involute-generating Oerlikon method.
Worms and worm gears

Worms – produced by turning or form milling

Fig. 10.38. Worm producing by turning.

Fig. 10.39. Globoid worm producing by form milling.
Worms and worm gears

Worm gears – produced by hobbing
Worm hob has a small diameter
In feed machining
CNC machines

Dedicated hobbing machine:
- Expensive machine
- Limited in size (modulus)
- Limited in shape (kinematics)
- used to be only option

CNC lathe with a special tool and cycle in control system
- Economical benefit
- One-step machining including gear
- Easy setup
CNC machining of gears

•Sandvik Coromant

Milling in soft and hard state of material!
Method Up-Gear® Technology for milling of gears
CNC machining of gears

• Sandvik Coromant

Milling in soft and hard state of material!
InvoMilling method multiprocesssing machining centers

- dry cutting
- multiaxis machining
- costs reduction
CNC machining of gears

- Sandvik Coromant

Milling in soft and hard state of material!

InvoMilling method multiprocesssing machining centers
CNC machining of gears

- Seco Tools
 Gear roughing

Roughing of external gears
CNC machining of gears

- Seco Tools
 - Finishing of gear profiles external
 - Finishing of gear profiles internal
CNC machining of gears

• Seco Tools
 Hobbing cutter with indexable inserts
CNC machining of gears

- Seco Tools
 Two screw threaded hobbing cutter for gears with inserts

http://www.mmspektrum.com/clanek/nastroje-pro-frezovani-ozubeni.html
CNC machining of gears

GEAR SKIVING (POWER SKIVING) like hobbing
- hob is helical, and slow - skiving is spur and high speed
- → high quality, productivity (high vc) one machine machining
- straight and helical gears
Power skiving

https://www.youtube.com/watch?v=2jdPvsH9234